SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Seedworx Blaze-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Seedworx Blaze-5 Red, Seedworx Blaze-5 Blue, Seedworx Blaze-5 Green, Seedworx Blaze-5 Yellow, Seedworx Blaze-5 Violet, Seedworx Blaze-5 Orange, Seedworx Blaze-5 Silver, Seedworx Blaze-5 Black, Seedworx Blaze-5 Gold</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

- **Relevant identified uses:** Seed Coating.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Centor Oceania</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>76 Coleman Road Carrum Downs 3201 VIC Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 3 8779 2172</td>
</tr>
<tr>
<td>Fax</td>
<td>Not Available</td>
</tr>
<tr>
<td>Website</td>
<td>http://www.centorgroup.com/centor-oceania</td>
</tr>
<tr>
<td>Email</td>
<td>info@centoroceania.com</td>
</tr>
</tbody>
</table>

Emergency telephone number

- **Association / Organisation** Not Available
- **Emergency telephone numbers** +61 3 8779 2105 (9 am to 5 pm AEST)
- **Other emergency telephone numbers** Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

- **NON-HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.**

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Flammability</th>
<th>0</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- **Poisons Schedule** Not Applicable
- **GHS Classification** Not Applicable

Label elements

- **GHS label elements** Not Applicable

SIGNAL WORD

NOT APPLICABLE

- **Hazard statement(s)** Not Applicable
- **Precautionary statement(s) Prevention**
- **Precautionary statement(s) Response**
- **Precautionary statement(s) Storage**

Continued...
Precautionary statement(s) Disposal

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12001-26-2</td>
<td>1-10</td>
<td>mica</td>
</tr>
<tr>
<td>13463-67-7</td>
<td>1-10</td>
<td>titanium</td>
</tr>
<tr>
<td>14807-96-6</td>
<td>1-10</td>
<td>talc</td>
</tr>
<tr>
<td>Not Available</td>
<td>30-60</td>
<td>Ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with eyes:
 - Wash out immediately with water.
 - If irritation continues, seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin or hair contact occurs:
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

Inhalation
- If fumes, aerosols or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

Ingestion
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas. Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances. In such an event consider:
- foam.
- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture
Fire Incompatibility
- None known.

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- The material is not readily combustible under normal conditions.
- However, it will break down under fire conditions and the organic component may burn.
- Not considered to be a significant fire risk.
- Heat may cause expansion or decomposition with violent rupture of containers.
- Decomposes on heating and may produce toxic fumes of carbon monoxide (CO).
- May emit acidic smoke.
Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) other pyrolysis products typical of burning organic material.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills
- Clean up all spills immediately.
Avoid breathing vapours and contact with skin and eyes.
Control personal contact with the substance, by using protective equipment.
Contain and absorb spill with sand, earth, inert material or vermiculite.
Wipe up.
Place in a suitable, labelled container for waste disposal.

Major Spills

Minor hazard.
Clear area of personnel.
Alert Fire Brigade and tell them location and nature of hazard.
Control personal contact with the substance, by using protective equipment as required.
Prevent spillage from entering drains or waterways.
Contain spill with sand, earth or vermiculite.
Collect recoverable product into labelled containers for recycling.
Absorb remaining product with sand, earth or vermiculite and place in appropriate containers for disposal.
Wash area and prevent runoff into drains or waterways.
If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

Limit all unnecessary personal contact.
Wear protective clothing when risk of exposure occurs.
Use in a well-ventilated area.
Avoid contact with incompatible materials.
When handling, DO NOT eat, drink or smoke.
Keep containers securely sealed when not in use.
Avoid physical damage to containers.
Always wash hands with soap and water after handling.
Work clothes should be laundered separately.
Use good occupational work practice.
Observe manufacturer's storage and handling recommendations contained within this MSDS.
Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Store in original containers.
Keep containers securely sealed.
Store in a cool, dry, well-ventilated area.
Store away from incompatible materials and foodstuff containers.
Protect containers against physical damage and check regularly for leaks.
Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Packaging as recommended by manufacturer.
Check that containers are clearly labelled
IBC container/pail.

Storage incompatibility

Avoid contamination of water, foodstuffs, feed or seed.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	mica	Mica	2.5 mg/m³	Not Available	Not Available	Not Available
Australia Exposure Standards	titanium dioxide	Titanium dioxide (a)	10 mg/m³	Not Available	Not Available	Not Available
Australia Exposure Standards	talc	Soapstone (respirable dust) / Talc, (containing no asbestos fibres)	3 mg/m³ / 2.5 mg/m³	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
mica	Mica; (mica silicates)	9 mg/m³	99 mg/m³	590 mg/m³
titanium dioxide	Titanium oxide; (Titanium dioxide)	10 mg/m³	10 mg/m³	10 mg/m³
talc	Talc	2 mg/m³	2 mg/m³	2.6 mg/m³

Ingredient	Original IDLH	Revised IDLH
mica	N.E. mg/m³ / N.E. ppm	1,500 mg/m³
titanium dioxide	N.E. mg/m³ / N.E. ppm	5,000 mg/m³
talc	N.E. mg/m³ / N.E. ppm	1,000 mg/m³
Ingredients determined not to be hazardous	Not Available	Not Available

MATERIAL DATA
Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, picking (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- **Lower end of the range**
 - 1: Room air currents minimal or favourable to capture
 - 2: Contaminants of low toxicity or of nuisance value only
 - 3: Intermittent, low production.
 - 4: Large hood or large air mass in motion

- **Upper end of the range**
 - 1: Disturbing room air currents
 - 2: Contaminants of high toxicity
 - 3: High production, heavy use
 - 4: Small hood - local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, must be considered. For example, the essential of technical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Appropriate engineering controls

Employers may need to use multiple types of controls to prevent employee overexposure.

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>AX-AUS</td>
<td>-</td>
<td>AX-PAPR-AUS / Class 1</td>
</tr>
</tbody>
</table>

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
</tbody>
</table>

Recommended material(s)

- Safety glasses with side shields
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. [AS/NZS 1336 or national equivalent]

Eye and face protection

- Chemical goggles
- Safety glasses with side shields
- Safety glasses with side shields
- Overalls
- Barrier cream
- Eyewash unit

Skin protection

See Hand protection below

Hands/feet protection

Wear general protective gloves, eg. light weight rubber gloves.

Body protection

See Other protection below

Other protection

No special equipment needed when handling small quantities.

Thermal hazards

Not Available

Continued...
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Physical state</th>
<th>Odour</th>
<th>Odour threshold</th>
<th>Melting point / freezing point (°C)</th>
<th>Initial boiling point and boiling range (°C)</th>
<th>Flash point (°C)</th>
<th>Evaporation rate</th>
<th>Flammability</th>
<th>Upper Explosive Limit (%)</th>
<th>Lower Explosive Limit (%)</th>
<th>Vapour pressure (kPa)</th>
<th>Solubility in water (g/L)</th>
<th>Vapour density (Air = 1)</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colourless</td>
<td>Liquid</td>
<td>Not Available</td>
<td>Not Available</td>
<td>7.1</td>
<td>Not Available</td>
<td>Miscible</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity

Chemical stability

Possibility of hazardous reactions

Conditions to avoid

Incompatible materials

Hazardous decomposition products

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Ingestion

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Eye

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Chronic

Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

<table>
<thead>
<tr>
<th>Seedworx Blaze-5</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause minor irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For titanium dioxide:

Humans can be exposed to titanium dioxide via inhalation, ingestion or dermal contact. In human lungs, the clearance kinetics of titanium dioxide is poorly characterized relative to that in experimental animals. (General particle characteristics and host factors that are considered to affect deposition and retention patterns of inhaled, poorly soluble particles such as titanium dioxide are summarized in the monograph on carbon black.) With regard to inhaled titanium dioxide, human data are mainly available from case reports that showed deposits of titanium dioxide in lung tissue as well as in lymph nodes. A single clinical study of oral ingestion of fine titanium dioxide showed particle size-dependent absorption by the gastrointestinal tract and large interindividual variations in blood levels of titanium dioxide. Studies on the application of sunscreens containing titanium dioxide to healthy skin of human volunteers revealed that titanium dioxide particles only penetrate into the outermost layers of the stratum corneum, suggesting that healthy skin is an effective barrier to titanium dioxide. There are no studies on penetration of titanium dioxide in compromised skin. Respiratory effects that have been observed among groups of titanium dioxide-exposed workers include decline in lung function, pleural disease with plaques and pleural thickening, and mild fibrotic changes. However, the workers in these studies were also exposed to asbestos and/or silica. No data were available on genotoxic effects in titanium dioxide-exposed humans. Many data on deposition, retention and clearance of titanium dioxide in experimental animals are available for the inhalation route. Titanium dioxide inhalation studies showed differences — both for normalized pulmonary burden (deposited mass per dry lung, mass per body weight) and clearance kinetics — among rodent species including rats of different size, age and strain. Clearance of titanium dioxide is also affected by pre-exposure to gaseous pollutants or co-exposure to cytotoxic aerosols. Differences in dose rate or clearance kinetics and the appearance of focal areas of high particle burden have been implicated in the higher toxic and inflammatory lung responses to intratracheally instilled vs inhaled titanium dioxide particles. Experimental studies with titanium dioxide have demonstrated that rodents experience dose-dependent impairment of alveolar macrophage-mediated clearance. Hamsters have the most efficient clearance of inhaled titanium dioxide. Ultrafine primary particles of titanium dioxide are more slowly cleared than their fine counterparts.

Titanium dioxide causes varying degrees of inflammation and associated pulmonary effects including lung epithelial cell injury, cholesterol granulomas and fibrosis. Rodents experience stronger pulmonary effects after exposure to ultrafine titanium dioxide particles compared with fine particles on a mass basis. These differences are related to lung burden in terms of particle surface area, and are considered to result from impaired phagocytosis and sequestration of ultrafine particles into the interstitium. Fine titanium dioxide particles show minimal cytotoxicity to and inflammatory/pro-fibrotic mediator release from primary human alveolar macrophages in vitro compared with other particles. Ultrafine titanium dioxide particles inhibit phagocytosis of alveolar macrophages in vitro at mass dose concentrations at which this effect does not occur with fine titanium dioxide. In-vitro studies with fine and ultrafine titanium dioxide and purified DNA show induction of DNA damage that is suggestive of the generation of reactive oxygen species by both particle types. This effect is stronger for ultrafine than for fine titanium dioxide, and is markedly enhanced by exposure to simulated sunlight/ultraviolet light.

Animal carcinogenicity data

Pigmentary and ultrafine titanium dioxide were tested for carcinogenicity by oral administration in mice and rats, by inhalation in rats and female mice, by intratracheal administration in hamsters and female rats and mice, by subcutaneous injection in rats and by intraperitoneal administration in male mice and female rats. In one inhalation study, the incidence of benign and malignant lung tumours was increased in female rats. In another inhalation study, the incidences of lung adenomas were increased in the high-dose groups of male and female rats. Cystic keratinizing lesions that were diagnosed as squamous cell carcinomas but re-evaluated as non-neoplastic pulmonary keratinizing cysts were also observed in the high-dose groups of female rats. Two inhalation studies in rats and one in female mice were negative. Intratracheally instilled female rats showed an increased incidence of both benign and malignant lung tumours following treatment with two types of titanium dioxide. Tumour incidence was not increased in intratracheally instilled hamsters and female mice. In vivo studies have shown enhanced micronucleus formation in bone marrow and peripheral blood lymphocytes of intrapitoneally instilled mice. Increased Hprt mutations were seen in lung epithelial cells isolated from titanium dioxide-instilled rats. In another study, no enhanced oxidative DNA damage was observed in lung tissues of rats that were intratracheally instilled with titanium dioxide. The results of most in-vitro genotoxicity studies with titanium dioxide were negative.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

* IUCLID

TITANIUM DIOXIDE

MICA

No significant acute toxicological data identified in literature search.

TALC

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalation (rat) LC50: >6.82 mg/l</td>
<td>Skin (human): 0.3 mg /3D (int)-mild</td>
</tr>
<tr>
<td>Inhalation (rat) LC50: >3.46 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.
2. Value obtained from manufacturer’s SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances.

INTERNATIONAL JOURNAL OF CHEMICALS REGISTRY

* Vol: 24 No: 17 Year: 2002*
Concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. No significant acute toxicological data identified in literature search. For talc (a form of magnesium silicate) the overuse of talc in nursing infants has resulted in pulmonary oedema, pneumonia and death within hours of inhaling talcum powder. The powder dries the mucus membranes of the bronchioles, disrupts pulmonary clearance, clogs smaller airways. Victims display wheezing, rapid or difficult breathing, increased pulse, cyanosis, fever. Mild exposure may cause relatively minor inflammatory lung disease. Long term exposure may show wheezing, weakness, productive cough, limited chest expansion, scattered rales, cyanosis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration</th>
<th>Effect</th>
<th>Value</th>
<th>Species</th>
<th>BCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>mica</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>titanium dioxide</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>talc</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Ingredients determined not to be hazardous</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>LOW (BCF = 10)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>LOW (KOC = 23.74)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code
SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Pollution Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk</td>
<td>titanium dioxide</td>
<td>Z</td>
</tr>
</tbody>
</table>

MICA(12001-26-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists

TITANIUM DIOXIDE(13463-67-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Inventory of Chemical Substances (AICS)

TALC(14807-96-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

National Inventory

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
</tr>
<tr>
<td>Canada - DSL</td>
</tr>
<tr>
<td>Canada - NDSL</td>
</tr>
<tr>
<td>China - IECSC</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
</tr>
<tr>
<td>Japan - ENCS</td>
</tr>
<tr>
<td>Korea - KECI</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
</tr>
<tr>
<td>USA - TSCA</td>
</tr>
</tbody>
</table>

Legend:

Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

CONTACT POINT

Centor Member Test Address Testy phone

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>mica</td>
<td>12001-26-2, 129899-84-9, 61076-94-6</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.